

First Iranian Geometry Olympiad September 2014

Solutions of Junior Level

1. In a right triangle ABC we have $\angle A = 90^{\circ}$, $\angle C = 30^{\circ}$. Denot by C the circle passing through A which is tangent to BC at the midpoint. Assume that C intersects AC and the circumcircle of ABC at N and M respectively. Prove that $MN \perp BC$.

Mahdi Etesami Fard

Proof. Let K midpoint of side BC. Therefore:

$$AK = KC \Rightarrow \angle KAC = \angle NKC = 30^{\circ}$$

$$\angle ANK = \angle NKC + \angle ACB = 60^{\circ}$$

A, K, N, M lie on circle (C). Therefore:

$$\angle KAN = \angle KMN = 30^{\circ}, \angle AMK = 60^{\circ}$$

We know that K is the circumcenter of $\triangle ABC$. So we can say KM = KC = AK. Therefore $\triangle AKM$ is equilateral.(because of $\angle AMK = 60^{\circ}$). So $\angle AKM = 60^{\circ}$. We know that $\angle AKB = 60^{\circ}$, so we have $\angle MKC = 60^{\circ}$. On the other hand:

$$\angle KMN = 30^{\circ} \Rightarrow MN \bot BC$$

2. The inscribed circle of $\triangle ABC$ touches BC, AC and AB at D, E and F respectively. Denote the perpendicular foots from F, E to BC by K, L respectively. Let the second intersection of these perpendiculars with the incircle be M, N respectively. Show that $\frac{S_{\triangle BMD}}{S_{\triangle CND}} = \frac{DK}{DL}$.

Mahdi Etesami Fard

Proof. Let I be the incenter of $\triangle ABC$. We know that

$$\angle BFK = 90^{\circ} - \angle B$$

$$\angle BFD = 90^{\circ} - \frac{1}{2} \angle B$$

$$\Rightarrow \angle DFM = \frac{1}{2} \angle B$$

But $\angle DFM = \angle MDK$. Therefore

$$\angle MDK = \frac{1}{2} \angle B$$

hence $\triangle MDK$ and $\triangle BID$ are similar (same angles) and $\frac{MK}{DK}=\frac{r}{BD}$. In the same way we have $\frac{NL}{DL}=\frac{r}{CD}$. Therefore

$$r = \frac{MK \cdot BD}{DK} = \frac{NL \cdot CD}{DL} \Rightarrow \frac{area\ of\ \triangle BMD}{area\ of\ \triangle CND} = \frac{MK \cdot BD}{NL \cdot CD} = \frac{DK}{DL}$$

3. Each of Mahdi and Morteza has drawn an inscribed 93-gon. Denote the first one by $A_1A_2...A_{93}$ and the second by $B_1B_2...B_{93}$. It is known that $A_iA_{i+1} \parallel B_iB_{i+1}$ for $1 \leq i \leq 93$ $(A_{93} = A_1, B_{93} = B_1)$. Show that $\frac{A_iA_{i+1}}{B_iB_{i+1}}$ is a constant number independent of i.

Morteza Saghafian

Proof. We draw a 93-gon similar with the second 93-gon in the circumcircle of the first 93-gon (so the sides of the second 93-gon would be multiplying by a constant number c). Now we have two 93-gons witch are inscribed in the same circle and apply the problem's conditions. We name this 93-gons $A_1A_2...A_{93}$ and $C_1C_2...C_{93}$.

We know that $A_1A_2 \parallel C_1C_2$. Therefore $A_1C_1 = A_2C_2$ but they lie on the opposite side of each other. In fact, $A_iC_i = A_{i+1}C_{i+1}$ and they lie on the opposite side of each other for all $1 \leq i \leq 93$ ($A_{94}C_{94} = A_1C_1$). Therefore A_1C_1 and A_1C_1 lie on the opposite side of each other. So $A_1C_1 = 0^\circ$ or 180° . This means that the 93-gons are coincident or reflections of each other across the center. So $A_iA_{i+1} = C_iC_{i+1}$ for

 $1 \leqslant i \leqslant 93$. Therefore, $\frac{A_i A_{i+1}}{B_i B_{i+1}} = c$.

4. In a triangle ABC we have $\angle C = \angle A + 90^{\circ}$. The point D on the continuation of BC is given such that AC = AD. A point E in the side of BC in which A doesnt lie is chosen such that

$$\angle EBC = \angle A, \angle EDC = \frac{1}{2} \angle A$$

Prove that $\angle CED = \angle ABC$.

Morteza Saghafian

Proof. Suppose M is the midpoint of CD. hence AM is the perpendicular bisector of CD. AM intersects DE and BE at P,Q respectively. Therefore, PC = PD. We have

$$\angle EBA + \angle CAB = \angle A + \angle B + \angle A = 180^{\circ} - \angle C + \angle A = 90^{\circ}$$

hence $AC \perp BE$. Thus in $\triangle ABQ$, BC, AC are altitudes. This means C is the orthocenter of this triangle and

$$\angle CQE = \angle CQB = \angle A = \frac{1}{2}\angle A + \frac{1}{2}\angle A = \angle PDC + \angle PCD = \angle CPE$$

hence CPQE is cyclic. Therefore

$$\angle CED = \angle CEP = \angle CQP = \angle CQA = \angle CBA = \angle B.$$

5. Two points X, Y lie on the arc BC of the circumcircle of $\triangle ABC$ (this arc does not contain A) such that $\angle BAX = \angle CAY$. Let M denotes the midpoint of the chord AX. Show that BM + CM > AY.

Mahan Tajrobekar

Proof. O is the circumcenter of $\triangle ABC$, so $OM \perp AX$. We draw a perpendicular line from B to OM. This line intersects with the circumcircle at Z. Since $OM \perp BZ$, OM is the perpendicular bisector of BZ. This means MZ = MB. By using triangle inequality we have

$$BM + MC = ZM + MC > CZ$$

But $BZ \parallel AX$, thus

$$\widehat{AZ} = \widehat{BX} = \widehat{CY} \Rightarrow \widehat{ZAC} = \widehat{YCA} \Rightarrow CZ = AY$$

hence BM + CM > AY.

